

OPERATION AND PERFORMANCE OF THE ATLAS L1CALO AND L1TOPO TRIGGERS IN RUN 2 AT THE LHC

Kate Whalen (U. Oregon)
DPF 2017

TRIGGERING AT HADRON COLLIDERS

- ▶ LHC pp collision rate is ~1 GHz
 - 40 MHz bunch crossing rate
 - ~25 interactions per bunch crossing in 2016
- Interesting physics is produced at a rate 6-8 orders of magnitude lower... or even less often!
- We need triggers to select interesting events to record and analyze offline

TRIGGERING AT HIGH LUMINOSITY

- The LHC has surpassed its design luminosity!
- Average of ~32 interactions per bunch crossing in 2017
 - ▶ 40-50 at start of fill
- Pile-up leads to increased trigger rates
 - In-time pile-up: multiple interactions per bunch crossing
 - Out-of-time pile-up: overlapping signals from adjacent bunch crossings
- Need to employ strategies to mitigate pileup effects without raising trigger thresholds

Z→µµ event with 25 reconstructed vertices

Mean Number of Interactions per Crossing

THE ATLAS TRIGGER SYSTEM

L1CALO TRIGGER IN RUN 2

Extended Common Merger Modules

- -New for Run 2!
- -Extended η-dependent thresholding
- -Threshold multiplicities to CTP
- -TOBs to L1Topo

L1Topo

- -New for Run 2!
- -Topological selection using trigger objects (TOBs) from L1Calo & L1Muon

OBJECT SELECTION AND REGIONS OF INTEREST

- Local maxima determined using a sliding window algorithm
- Energy sums compared to a variety of η-dependent thresholds
 - ~2x as many as in Run 1
 - ▶ 16 EM, 16 tau, 25 jet, 16 sum E_T , 16 missing E_T , 8 missing E_T significance
- Regions of Interest (RoI) identified and sent to the high-level trigger
 - EM / tau: 2x2 trigger towers $(\Delta \eta \times \Delta \phi = 0.2 \times 0.2)$
 - Jets: 4x4 jet elements $(\Delta \eta \times \Delta \phi = 0.8 \times 0.8)$

EM ISOLATION

- ► Many interesting physics signatures involve isolated electrons or photons (e.g. $Z\rightarrow ee$, $H\rightarrow \chi\chi$)
- Isolation selection: require energy in the vicinity of the EM cluster to be below a given threshold
 - ▶ EM: ring around local maximum
 - Hadronic: inner core behind local maximum
 - \triangleright E_T- dependent thresholds with steps of 0.5 GeV
- Adding EM isolation requirement:
 - ▶ 45% rate reduction, only 2% efficiency loss for single electron trigger in 2016
- Retuned "medium" isolation thresholds for 2017 for additional improvements
 - ▶ 11% rate reduction, only 1% efficiency loss for L1_EM24VHIM!

Example: L1_EM20VHI
EM cluster with $E_T > 20$ GeV
Threshold varies with η Hadronic core isolation
EM isolation

Efficiency

PPM IMPROVEMENTS: PEDESTAL CORRECTION

- Calorimeter pulses are longer than one bunch crossing
- Overlapping signals from adjacent bunch crossings cause baseline shift for L1Calo input signal
 - Increased rates at the beginning of the bunch train
 - $\hbox{$\blacktriangleright$ Missing E_T trigger rates increase non-linearly with } \\ Iuminosity$
- Improved preprocessor modules apply dynamic pedestal correction by calculating and subtracting the average input

Instantaneous luminosity / bunch [10³⁰ cm⁻² s⁻¹]

PPM IMPROVEMENTS: FILTERS & NOISE CUTS

- Reoptimized autocorrelation filters / noise cuts for improved high-pileup performance
 - Filter coefficients take into account correlations between bunch crossings
- Also reoptimized EM noise cuts for improved TE turn-on at low pileup (2016 p-Pb run)!

L1TOPO: NEW IN RUN 2!

- How do we handle rate limitations as we exceed the LHC's design luminosity?
 - Prescale?
 - Raise thresholds?
- Traditional strategies risk throwing away interesting events
 - Particularly critical for new physics searches and studies of rare processes
- Instead, apply real-time kinematic and angular cuts at level-1
- Increase signal purity and reduce trigger rates without losing interesting physics

L1TOPO COMMISSIONING

- Can run up to 128 algorithms on four FPGAs in 75 ns (3 bunch crossings)
- Combines info from L1Calo and L1Muon trigger objects (TOBs)
 - Muons, electrons/photons, taus, jets, energy sums
 - (η, ϕ) coordinates, p_T , E_T , E_T , isolation
- Installation/commissioning in 2015/2016
 - Algorithm validation: hardware/simulation comparisons
 - Test patterns in ATLAS with artificial "hot towers"
 - Validation of timing, readout stability at 100 kHz
 - Online/offline monitoring of timing, simulation/transmission
- First high-priority L1Topo trigger items enabled in Sept. 2016 (tau, B-physics)
- 2017: more items enabled, some of which are now primary triggers
- Commissioning of remaining algorithms continues

L1TOPO USE CASES

- L1Topo allows us to probe a wide range of physics signatures using a variety of algorithms
- The following is just a brief overview!

Physics signature	Input objects	Algorithms
Н→тт	т, jets	Δη, Δφ, ΔR, disambiguation
SUSY, ZH → νν bb	jets, E _T ^{miss}	H _T , min Δφ
B-physics	muons	ΔR, invariant mass
Long-lived particles	muons, E _T ^{miss}	late muons (in next bunch crossing)
Lepton flavour violation	muons, EM clusters	ΔR

PHYSICS IMPACT

- SM Higgs → $\tau\tau$ trigger with $\Delta R(\tau,\tau)$ requirement is fully efficient in the signal region!
- ▶ B-physics dimuon trigger with $\Delta R(\mu,\mu)$ and invariant mass requirements reduces trigger rate by a factor of 4, with only 12% efficiency loss!

K. Whalen - DPF 2017

A MULTI-PRONGED APPROACH TO PILEUP MITIGATION IN RUN 2

- LHC conditions are becoming more challenging as we surpass the design luminosity!
- The L1Calo trigger employs a variety of strategies to mitigate the effects of increasing pileup on the rates and efficiency
- New for Run 2, the L1Topo trigger allows us to improve signal purity and reduce trigger rates while retaining interesting physics events